Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Front Cardiovasc Med ; 8: 710946, 2021.
Article in English | MEDLINE | ID: covidwho-1399130

ABSTRACT

Objectives: To evaluate the impact of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) on the inflammatory response and viral clearance in coronavirus disease 2019 (COVID-19) patients. Methods: We included 229 patients with confirmed COVID-19 in a multicenter, retrospective cohort study. Propensity score matching at a ratio of 1:3 was introduced to eliminate potential confounders. Patients were assigned to the ACEI/ARB group (n = 38) or control group (n = 114) according to whether they were current users of medication. Results: Compared to the control group, patients in the ACEI/ARB group had lower levels of plasma IL-1ß [(6.20 ± 0.38) vs. (9.30 ± 0.31) pg/ml, P = 0.020], IL-6 [(31.86 ± 4.07) vs. (48.47 ± 3.11) pg/ml, P = 0.041], IL-8 [(34.66 ± 1.90) vs. (47.93 ± 1.21) pg/ml, P = 0.027], and TNF-α [(6.11 ± 0.88) vs. (12.73 ± 0.26) pg/ml, P < 0.01]. Current users of ACEIs/ARBs seemed to have a higher rate of vasoconstrictive agents (20 vs. 6%, P < 0.01) than the control group. Decreased lymphocyte counts [(0.76 ± 0.31) vs. (1.01 ± 0.45)*109/L, P = 0.027] and elevated plasma levels of IL-10 [(9.91 ± 0.42) vs. (5.26 ± 0.21) pg/ml, P = 0.012] were also important discoveries in the ACEI/ARB group. Patients in the ACEI/ARB group had a prolonged duration of viral shedding [(24 ± 5) vs. (18 ± 5) days, P = 0.034] and increased length of hospitalization [(24 ± 11) vs. (15 ± 7) days, P < 0.01]. These trends were similar in patients with hypertension. Conclusions: Our findings did not provide evidence for a significant association between ACEI/ARB treatment and COVID-19 mortality. ACEIs/ARBs might decrease proinflammatory cytokines, but antiviral treatment should be enforced, and hemodynamics should be monitored closely. Since the limited influence on the ACEI/ARB treatment, they should not be withdrawn if there was no formal contraindication.

3.
Sci Rep ; 10(1): 17718, 2020 10 19.
Article in English | MEDLINE | ID: covidwho-880700

ABSTRACT

COVID-19 has been widely spreading. We aimed to examine adaptive immune cells in non-severe patients with persistent SARS-CoV-2 shedding. 37 non-severe patients with persistent SARS-CoV-2 presence that were transferred to Zhongnan hospital of Wuhan University were retrospectively recruited to the PP (persistently positive) group, which was further allocated to PPP group (n = 19) and PPN group (n = 18), according to their testing results after 7 days (N = negative). Epidemiological, demographic, clinical and laboratory data were collected and analyzed. Data from age- and sex-matched non-severe patients at disease onset (PA [positive on admission] patients, n = 37), and lymphocyte subpopulation measurements from matched 54 healthy subjects were extracted for comparison (HC). Compared with PA patients, PP patients had much improved laboratory findings. The absolute numbers of CD3+ T cells, CD4+ T cells, and NK cells were significantly higher in PP group than that in PA group, and were comparable to that in healthy controls. PPP subgroup had markedly reduced B cells and T cells compared to PPN group and healthy subjects. Finally, paired results of these lymphocyte subpopulations from 10 PPN patients demonstrated that the number of T cells and B cells significantly increased when the SARS-CoV-2 tests turned negative. Persistent SARS-CoV-2 presence in non-severe COVID-19 patients is associated with reduced numbers of adaptive immune cells. Monitoring lymphocyte subpopulations could be clinically meaningful in identifying fully recovered COVID-19 patients.


Subject(s)
B-Lymphocytes/cytology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , T-Lymphocytes/cytology , Adult , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Betacoronavirus/isolation & purification , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , COVID-19 , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Crit Care Med ; 48(11): e1079-e1086, 2020 11.
Article in English | MEDLINE | ID: covidwho-725837

ABSTRACT

OBJECTIVES: An ongoing outbreak of coronavirus disease 2019 is spreading globally. Acute hypoxemic respiratory failure is the most common complication of coronavirus disease 2019. However, the clinical effectiveness of early high-flow nasal oxygen treatment in patients with coronavirus disease 2019 with acute hypoxemic respiratory failure has not been explored. This study aimed to analyze the effectiveness of high-flow nasal oxygen treatment and to identify the variables predicting high-flow nasal oxygen treatment failure in coronavirus disease 2019 patients with acute hypoxemic respiratory failure. DESIGN: A multicenter, retrospective cohort study. SETTING: Three tertiary hospitals in Wuhan, China. PATIENTS: Forty-three confirmed coronavirus disease 2019 adult patients with acute hypoxemic respiratory failure treated with high-flow nasal oxygen. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Mean age of the enrolled patients was 63.0 ± 9.7 years; female patients accounted for 41.9%. High-flow nasal oxygen failure (defined as upgrading respiratory support to positive pressure ventilation or death) was observed in 20 patients (46.5%), of which 13 (30.2%) required endotracheal intubation. Patients with high-flow nasal oxygen success had a higher median oxygen saturation (96.0% vs 93.0%; p < 0.001) at admission than those with high-flow nasal oxygen failure. High-flow nasal oxygen failure was more likely in patients who were older (p = 0.030) and male (p = 0.037), had a significant increase in respiratory rate and a significant decrease in the ratio of oxygen saturation/FIO2 to respiratory rate index within 3 days of high-flow nasal oxygen treatment. In a multivariate logistic regression analysis model, male and lower oxygen saturation at admission remained independent predictors of high-flow nasal oxygen failure. The hospital mortality rate of the cohort was 32.5%; however, the hospital mortality rate in patients with high-flow nasal oxygen failure was 65%. CONCLUSIONS: High-flow nasal oxygen may be effective for treating coronavirus disease 2019 patients with mild to moderate acute hypoxemic respiratory failure. However, high-flow nasal oxygen failure was associated with a poor prognosis. Male and lower oxygenation at admission were the two strong predictors of high-flow nasal oxygen failure.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Hypoxia/therapy , Intubation, Intratracheal/methods , Pneumonia, Viral/therapy , Adult , Aged , COVID-19 , Cohort Studies , Coronavirus Infections/complications , Female , Humans , Hypoxia/etiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Positive-Pressure Respiration , Respiratory Insufficiency/therapy , Retrospective Studies , SARS-CoV-2
5.
Infect Dis Poverty ; 9(1): 104, 2020 Jul 23.
Article in English | MEDLINE | ID: covidwho-672011

ABSTRACT

From December 25, 2019 to January 31, 2020, 33 cases of the coronavirus disease 2019 (COVID-19) were identified in the Department of Respiratory and Critical Care Medicine of Zhongnan Hospital of Wuhan University, China, yet none of the affiliated HCWs was infected. Here we analyzed the infection control measures used in three different departments in the Zhongnan Hospital of Wuhan University and correlated the measures with the corresponding infection data of HCWs affiliated with these departments. We found that three infection control measures, namely the isolation of the presumed positive patients, the use of facemasks and intensified hand hygiene play important roles in preventing nosocomial transmission of COVID-19.


Subject(s)
Coronavirus Infections/prevention & control , Cross Infection/prevention & control , Hand Hygiene/statistics & numerical data , Health Personnel/statistics & numerical data , Masks/statistics & numerical data , Pandemics/prevention & control , Patient Isolation/statistics & numerical data , Pneumonia, Viral/prevention & control , Adult , Aged , Betacoronavirus/physiology , COVID-19 , China , Coronavirus Infections/transmission , Cross Infection/transmission , Female , Hospitals, University , Humans , Male , Middle Aged , Pneumonia, Viral/transmission , SARS-CoV-2 , Young Adult
6.
J Med Virol ; 92(7): 833-840, 2020 07.
Article in English | MEDLINE | ID: covidwho-164692

ABSTRACT

In December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, and has spread globally. However, the transmission route of SARS-CoV-2 has not been fully understood. In this study, we aimed to investigate SARS-CoV-2 shedding in the excreta of COVID-19 patients. Electronical medical records, including demographics, clinical characteristics, laboratory and radiological findings of enrolled patients were extracted and analyzed. Pharyngeal swab, stool, and urine specimens were collected and tested for SARS-CoV-2 RNA by real-time reverse transcription polymerase chain reaction. Viral shedding at multiple time points in specimens was recorded, and its correlation analyzed with clinical manifestations and the severity of illness. A total of 42 laboratory-confirmed patients were enrolled, 8 (19.05%) of whom had gastrointestinal symptoms. A total of 28 (66.67%) patients tested positive for SARS-CoV-2 RNA in stool specimens, and this was not associated with the presence of gastrointestinal symptoms and the severity of illness. Among them, 18 (64.29%) patients remained positive for viral RNA in the feces after the pharyngeal swabs turned negative. The duration of viral shedding from the feces after negative conversion in pharyngeal swabs was 7 (6-10) days, regardless of COVID-19 severity. The demographics, clinical characteristics, laboratory and radiologic findings did not differ between patients who tested positive and negative for SARS-CoV-2 RNA in the feces. Viral RNA was not detectable in urine specimens from 10 patients. Our results demonstrated the presence of SARS-CoV-2 RNA in the feces of COVID-19 patients and suggested the possibility of SARS-CoV-2 transmission via the fecal-oral route.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , RNA, Viral/isolation & purification , Virus Shedding , Adult , COVID-19 , China/epidemiology , Coronavirus Infections/diagnosis , Electronic Health Records , Feces/virology , Female , Humans , Male , Middle Aged , Pandemics , Pharynx/virology , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL